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Abstract: The title discussion is preceded by an overview of results of studies conducted 

using a model of logical networks. The presented results permit the conclusion that there 

exists a monotone polynomial network for a 3SAT problem. In particular it is claimed that 

(1) a 3SAT problem can be treated as a conjunction of elementary 3SAT problems, that (2) 

for any elementary 3SAT problem there is a universal logical network of constant size 

(number of gates), and finally that (3) for the conjunction of elementary 3SAT problems  

there exists a polynomial network, and that it is a monotone network. 
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Make a good start 
[in the field of problem solving theory] 

 

 

I. INTRODUCTION: Formulating the Argument 

 

 

Resolving the nature of the relationship of including classes P  NP is based on 

parameterization of the complexity of classes due to a computation model (a 

Turing machine), a mode of calculation (determinism and non-determinism), 

resources (time and memory) and constraints (O(.)notation). 

Approved method of parameterization has become the basis for the concept of 

the Cook-Levin theorem. It sets out the original NP-complete problem, and 

indirectly suggests that, if demonstrated to be a polynomial algorithm for a 3SAT 

problem (or any other NP-complete problem), then N = NP. On the other hand, if 

the lower exponential restriction is proved, then P  NP. 

In the course of the study, some other simple models, equivalent to a Turing 

machine model, were added to the mode of parameterization of complexity of 

classes, which was defined at the very beginning. It is known, for example, that 

Turing machines can be simulated by using logical networks. The proof of a 

theorem that combines the complexity of logical networks with the complexity of 

time logic can be found in the book by Michael Sipser [1]. 

The usefulness of the model of logical networks while resolving the problem of 

P versus NP results from close relationships of logical networks and the SAT 

satisfiability problem.  
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Firstly, the SAT problem has been formulated in terms of propositional calculus. 

Since clauses can be expressed in the form of logical functions, the SAT can be 

defined by logical functions, and these, in turn, can be conveniently represented in 

the form of logical networks.  

Secondly, the proof of Cook-Levin theorem can alternatively be performed 

using just logical networks [1, pp. 401-408].  

And finally, the logical networks are in the form of practical implementation of 

digital circuits that compute logical functions [2]. 

It is also known that every problem in class P has a polynomial network. 

Unfortunately, since there are polynomial network for unresolved problems, the 

reverse of this statement is not true.  

Therefore, a concept of monotone polynomial networks is introduced. And 

further, by claiming that a monotone polynomial network which represents a 

certain problem exists if and only if this problem belongs to class P, they are 

associated with polynomial calculations.  

The above statement can be regarded as equivalent to the Cook-Levin theorem. 

It indicates that if there exists a monotone polynomial for some NP-complete 

problem, then P = NP. On the other hand, if it is proved that NP-complete 

problems do not have monotone polynomial networks, then P  NP. 

In spite of some assertions (cf. Razborow’s theorem) which favor the 

hypothesis that NP-complete problems do not have polynomial networks that are 

either monotonous or non-monotonous (Hypothesis B [3, p. 287]), it will be 

further argued that there exists a monotone polynomial network for the original 

NP-complete problem, which is 3SAT. 

 

The term of NP problem itself speaks against Hypothesis B. It says that 

the verification (checking) of the certificate of solution to the problem takes place 

in deterministic polynomial time. It can therefore be assumed that the verification 

process will be carried out by a polynomial network. This situation corresponds to 

the statements and descriptions of the network and their relationships with 

problems CIRCUIT SAT and CIRCUIT VALUE and the definition of a monotone 

network
1
, which will be referred to at a later stage (Fact 2.7). 

 

Subsequently, there will be exploited results of research in the model of logical 

networks that have already been addressed in literature. 

 

 

II. LOGICAL FUNCTIONS AND LOGICAL NETWORKS 

The basic statements referring to the model of logical networks can be clearly 

presented by a number of facts, most of which have been taken from the book by 

Christos Papadimitriou [3]. 
                                                           
1
 In fact, by definition, a monotonous network is intended to constitute a "special" kind of 

certificate – a word in which all variables have a fixed logical value true. 



3 
 

 

Fact 2.1: Equivalence of logical formulae and logical functions [3, p. 95]. 

 

Each formula φ with variables x1, … , xn is the n-arguments logical function f 

and conversely, any n-arguments logical function f can be expressed as a formula φ 

containing variables x1, … , xn. 

 

Fact 2.2: Representation of logic functions by logical networks[3, pp. 95-96]. 

 

Any logic function can be represented as a logical network, defined as a graph 

C=(V,E) where V={1, … , n} are the gates of graph C, whereas E is the set of edges 

(i, j) at i <j (a-cyclicity condition). 

The syntax of the network additionally links type s(i) є {true,false} { x1, … , 

xn}  {, , ¬} to each gate i є V and is characterized by the degree of input 

(number of falling edges) equal to 0, 1 or 2. The vertex which has no outgoing 

edges, called the output gate of the network, calculates the logic function. 

If we consider networks that have multiple outputs, they can calculate several 

functions simultaneously. Based on such a definition of a network, it is possible to 

construct three types of networks: 

- a network without variables (Fig. 1 a), i.e. with gates V є {true, false}   {, , 

¬};  

- a network with variables and no constants (Fig. 1 b), i.e. with gates V є { x1, … 

, xn}  {, , ¬}; 

- a network with variables and constants (Fig. 1 c), i.e. with gates V є {true, 

false}  { x1, … , xn}  {, , ¬}.. 

 

Note 2.1: Each multi-output network can be reduced in an elementary way by 

means of a Cext expansion network to a network with one output. For example, for 

any m output network, a Cext expansion network can be composed of not more than 

(m-1) AND gates in a sequential or parallel arrangement. 

 

By allowing multi-output networks, each of the types of networks can, by analogy 

with combination systems, be treated as a multi-pole expansion. Circuit diagrams 

of selected types of network are shown in Figure 1. 
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b) 
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Fig. 1. Circuit diagrams of selected types of logical networks, where: 

X – the vector of input signals (variables x1, x2, … , xn)  
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U – the vector of constants ui  є {true,false} i=1, 2, … , k;  

Y  - the vector of outputs, yj є {true,false} j=1, 2, … , m is the calculated value 

of a function (not necessarily a function of all n variables.) 

 

 

Subsequent statements involve logical networks describing problems of 

different classes of computational complexity. 

 

Fact 2.3: The network as a logical CIRCUIT VALUE problem [3, p. 97].  

Network C without variables (i.e. the network of gates V(i) є {true,false}   {, 

, ¬})  (a circuit diagram of Figure 1 a) defines the problem CIRCIUT VALUE є P. 

 

Fact 2.4: Logical network as a problem of CIRCUIT SAT [3, p. 97]. 

Network C with variables (Fig. 1 b, c) where it should be noted that there is 

such a valuation of variables that the output gate returns true, defines the problem 

CIRCIUT SAT.  

Showing [3, p. 179] a polynomial reduction of CIRCUIT SAT to 3SAT in log (n) 

memory, it is assumed that CIRCUIT SAT belongs to the class NP-complete 

problems. 

The subsequent quoted statements are the result of research involving 

computational complexity and the complexity of logical networks. The complexity 

of the network is defined as the size of the network expressed by the number of 

gates of this network. 
 

Fact 2.5: Polynomial networks [3, pp. 285-286].  

The network has a polynomial size, if there is a family of networks C={C0, C1, 

… }  for which it is true, firstly, that the size of Cn is equal to at most p(n) for some 

fixed polynomial p, and secondly, that for each combination of variables xi є {0,1} 

i=1,2, … , n satisfying the formula represented by this network, the value of the 

network is true  (in terms of the language of Turing machines we would say that 

for the input words that the machine accepts - the value of the network is true). 

 

Fact 2.6: Any problem in class P has a polynomial network [3, p. 286].  

 

Unfortunately, the reverse is not true. Not every polynomial network is a 

representation of a problem belonging to class P. 

 

Note 2.2: It has been shown that there exist unresolved problems that do have 

polynomial networks. This ensures that it cannot be concluded that  P = NP, even 

though the network of C defining the problem of CIRCUIT SAT (i.e. the network 

with variables when it should be noted that there is such a valuation of variables 

that the output gate returns true) must have a polynomial size so that the reduction 

can be done in polynomial time. And if so, CIRCUIT SAT would belong to the 

class P. On the other hand, if CIRCUIT SAT is reduced to 3SAT, and thus in terms 

of COMPLETENESS is not worse than 3SAT, then also 3SAT would fall into P. 
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Combining polynomial networks with polynomial calculations is performed by 

introducing the concept of a monotone network. 
 

Fact 2.7: Polynomial monotone networks [3, p. 287]. 

Family of networks  C={C0, C1, … } is monotone if for the variables xi є {1} 

i=1, 2, … ,n  it is possible to construct a network Cn in the log n memory.  

 

This leads to the conclusion that a monotone family of polynomial networks for 

any problem the family represents exists if and only if this problem belongs to class 

P. Therefore, if for any problem NP - complete there is a monotone polynomial 

network, the resolution of the P versus NP issue takes the form P = NP. 
 

 

III. A 3SAT MONOTONE POLYNOMIAL NETWORK 

Judging by the facts in the preceding section it can be argued that 3SAT 

monotone networks exist. The scheme presented below consists of the following 

sequence: 

- the various clauses in the record of CNF problem 3SAT are elementary 3SAT 

problems,  

- for each elementary 3SAT there is a universal network of fixed size (the number 

of gates),  

- all-purpose networks representing elementary problems 3SAT (clauses) are 

combined into a multi-output polynomial network which, after its enlargement by 

the network Cext transforming a network to a single-output network, decides on 

CNF satisfiability for the 3SAT formula. 

 

The veracity of particular elements of the above scheme leads to the conclusion 

that there exists a monotone polynomial network for the problem 3SAT. 

 

 

3.1 Elementary 3SAT 

 

A logical function assigns a logical value of variables y to logical values of 

variables x, and is described formally by using logical expressions. Logical 

expressions can be written in many different forms, which are equivalent to each 

other. 

Logical expressions are defined as follows: 

- 0, 1, xi i ¬xi are logical expressions, and where φ1 and φ2 are logical 

expressions, the  φ1 φ2, φ1 φ2 are logical expressions; 

- a logical expression can have only the form described above, but instead of xi  

there may be other logical variables. 
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We know all the logical expressions describing the functions of two variables 

(there are 16 of them altogether). With their help we can describe any function of n 

variables. If the function of  i variables is denoted by f 
i
, then  f

2(
f 

i
(x1, x2, … , xi ), 

xi+1) = f 
i+1

. Thus, for example,  f 
3
= f 

2
 (f 

2
(x1, x2), x3 ), and because there can occur 

any variables, it may take the form of f 
3
= f 

2
 (f 

2
(xr, xs ), xt  ). 

If φ is a logical expression that describes the function of n variables in the form: 

  

 φ = f1
3 
(xr, xs, xt ) f2

3
 (xr, xs, xt )  . . .    fm

3
(xr, xs, xt ) (1) 

 

where: xr, xs, xt  {x1, x2, … , xn} and r  {1, 2, … n}, s  (r+1, r+2, … ,n}  

and t  {s+1, s+2, … n}, ie. r < s < t, 

then, leaving the designation of arguments of each function, it can be assumed that 

φ is a function of m variables, whose role shall be performed by the functions fi
3
 , 

i=1, 2, … , m. 
 

  φ = f 
m
(f1

3
, f2

3
, … , fm

3
) = f

 2
(f 

m-1
(f1

3
, f2

3
, … , fm-1

3
), fm

3
) 

 

Expanding the final form of the expression, we finally get: 

 

 φ  = f
 2
(f 

2
( … f 

2
(f 

2
(f1

3
, f2

3
), f3

3
)… , fm-1

3
), fm

3
) (2) 

 

The resulting form of the expression shows that f1
3
, f2

3
, … fm

3
  can be treated 

independently as arguments to the next (m-1) two-argument f 
2
  functions (they are 

all functions implemented by AND gates), to start with the most deeply nested.  

 

In terms of logical networks, this corresponds to a situation in which f1
3
, f2

3
, … fm

3
 

are independent pieces of the network with  m outputs, so that the output of j- 

teenth output resolves satisfiability of j-teenth function  fj
3
(xr, xs, xt ). 

 

Fact 3.1 Elementary 3SAT 

 

If we assume that the function φ described by the expression (1) is a normal  

product of the CNF corresponding to the definition of the problem 3SAT, then the 

functions fi i=1, 2, … , m are represented by clauses of  three different variables, 

then each of the eight possible forms of the clauses of the three variables may be 

treated as an elementary 3SAT. 

In propositional calculus, the clause is defined as an alternative valuation of 

literals defining logical variables, and the conjunction of literals is called an 

implicant. Equivalent terms of these concepts in terms of elementary logic 

functions are an alternative conjunction and an elementary conjunction, 

respectively. The combination of eight definable clauses (elementary alternatives) 

and eight implicants (elementary conjunctions) of a function of three variables is 

presented in Table 1. 
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Table 1. Overview of elementary alternatives and conjunctions of a function of three variables. 

Valuation of 

variables  

x3            x2            x1 

elementary alternatives 

(clauses) 

elementary conjunctions 

(implicants) 

0 0 0 
  

0 0 1 
  

0 1 0 
  

0 1 1 
  

1 0 0 
  

1 0 1 
  

1 1 0 
  

1 1 1 
  

 

 

3.2 A Universal 3 SAT Elementary Logical Network 

 

For eight of the various clauses of the three variables there can be 255 functions 

defined (without constant TRUE) that are expressed as a conjunction of clause 

combinations of one, two, etc., up to eight out of eight, and each of them be 

assigned a number. Every function, so defined, is expressed in a canonical 

conjunctive normal form (CNF).  

 

By using a dual way of defining functions, owing to implicants, we obtain 255 

functions (without constant FALSE) that are expressed as an alternative of an 

appropriate combination of implicants, and then each function will be expressed in 

a canonical disjunctive normal form (DNF). 
 

If constructing a logical network that represents functions of three variables, 

even if we confine ourselves to deal with 8 functions described by a single clause, 

is being implemented directly on the basis of expression clauses, then, although not 

complicated, they will vary in size. For example, for function f 
3 
(xr, xs, xt ) = (xr  xs 

 xt ) 3 OR gates are enough, but for the function f 
3 
(xr, xs, xt ) = (¬xr  ¬xs  ¬xt , 

the network, in addition to the 3 OR gates, will also include 3 more NOT gates. 

Because of the varied size of an elementary network 3SAT CNF, it is not 

a favorable factor for the task of constructing a logical network for the whole CNF 

3SAT. 

It turns out that at the expense of increasing the size of the logical network, it is 

possible to operate a universal logical network that can represent any logic function 

of three variables. The functions can equally be defined in both CNF and DNF 

forms. 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 

)( 123 xxx  )( 123 xxx 
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Such a universal network for the case of elementary 3SAT CNF is a logical 

network that represents a constant function TRUE, and for the case of elementary 

3SAT DNF, it is a network representing the function of a constant FALSE. In both 

cases, the basis for constructing a network system is a setup of multiplexer 8/1.  

 

The type of gates and the way of their combination in the logical network is 

defined by a scheme configuration, as presented in Figure 2. 

 

The input signals of variables xr, xs, xt, will be provided onto the address input 

system. Constant signals (vectors U=[u1, u2, … , u8], interpreted as a binary 

number of the function) will be made onto the data input of the multiplexer. The 

output signal from OR gate is determined by the table of positions (Table 2), which 

clearly shows that the signal at the output corresponds to the signal being fed at the 

input, defined by the current state of the address inputs. 

 
 Figure 2. The setup of multiplexer 8/1 

 
Table 2. The table of positions of the multiplexer 8/1 

xr 

Address inputs             xs 

xt 

0 1 0 1 0 1 0 1 

0 0 1 1 0 0 1 1 

0 0 0 0 1 1 1 1 

Output data u1 u2 u3 u4 u5 u6 u7 u8 
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A diagram of multiplexer 8/1, as shown in Figure 2, allows for the 

specification of the size corresponding to its logical network. Each four-

input AND gate, occurring in the circuit, can be replaced by 3 two-input 

AND gates. Further, each eight-input OR gate can be replaced with 7 OR 

gates. Ultimately, the size of the logical network that reproduces the layout 

of the multiplexer will be the size of a total of 48 gates, including 3 input 

gates of variables, 8 constant input gates, 24 two-input AND gates, 7 two-

input OR gates and 6 NOT gates. 

 

Based on the preceding discussion of the logical network of elementary 

3SAT, we suggest formulating the following assertion: 

 

Fact 3.2: Any logical function f of three different variables xr, xs, xt, 

described by the expression in one of the two canonical normal forms, 

conjunctive (CNF) or disjunctive (DNF), has a universal logical network of 

fixed size k gates. It takes the form of a multi-pole, as shown in Figure 3, 

which corresponds to the circuit diagram of Figure 1 c. 
 

 

 

 

 

 

 
 

Figure 3 Circuit diagram of a universal network of a logical function of three variables. 
 

 

3.3 The Design of a 3SAT Network 

 

In order to examine all possible 255 functions as defined by the CNF 

expression, one would have to operate on 255 different vectors of constant 

U=[u1, u2, … , u8]. 

Since we have assumed that we will treat functions described by 

expressions having the form of individual clauses as elementary 3SAT, we 

can confine ourselves to examining eight functions defined by eight 

different clauses, and then while constructing the network, we will be using 

eight fixed vectors U, which are clearly determined by the form of clauses. 
 

 

 

u1 u2 u8 

. . . . 

c 

xr 

xs 

xt 
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U = 

 [0, 1, 1, 1, 1, 1, 1, 1]         if 
 

[1, 0, 1, 1, 1, 1, 1, 1]         if 
 

[1, 1, 0, 1, 1, 1, 1, 1]         if 
 

[1, 1, 1, 0, 1, 1, 1, 1]         if 
 

[1, 1, 1, 1, 0, 1, 1, 1]         if 
 

[1, 1, 1, 1, 1, 0, 1, 1]         if 
 

[1, 1, 1, 1, 1, 1, 0, 1]         if 
 

[1, 1, 1, 1, 1, 1, 1, 0]         if 
 

 

The individual vectors are constant false to their subsequent positions. In order 

to determine the number of positions in which they occur in the vector U, it is 

sufficient to interpret the negative literals in a clause as the digit "1" of the binary, 

for example (x̅3 ∨ x̅2 ∨ x1) ≡ 1102 = 610. 

 

Note 3.1: It should be made clear that the determination of vectors U is directly 

affected only by the number of negative literals and it is indifferent which 

combination of three variables we deal with. This can be any combination of three 

variables allowed by the formula (1) defining 3SAT CNF.  

 

Note 3.2: If all constant inputs will be given signals true (ui=1), then the 

considered multiplexer scheme performs the function TRUE. In turn, if all constant 

inputs are given signals false (ui=0), the multiplexer performs the function FALSE. 

 

In view of the observations made in Note 3.1 and Note 3.2, we assume that the 

network performing function TRUE for the three variables will become the basis 

for constructing an entire logical network 3SAT CNF. In addition, saving the 

expression (2) in the form of operators, and using the prefix operator AND, we 

shall obtain a form that clearly defines how to design a Cext. expansion network. 

 

3SAT CNF  = AND(AND( … AND(AND(f1
3
, f2

3
), f3

3
)… , fm-1

3
), fm

3
) 

 

As a result, the design of the network 3SAT CNF can be reduced to an m-fold 

replication of an elementary network 3SAT represented by the network performing 

the function TRUE , and to establishing a constant false on an appropriate position 

of vector Ui (i=1, 2, … , m). 
 

Assuming that the way of numbering address input gates and outputs of data is 

identical in each segment representing elementary 3SAT network, and using the 

)( 123 xxx 

)( 123 xxx 

)( 123 xxx 

)( 123 xxx 

)( 123 xxx 

)( 123 xxx 

)( 123 xxx 

)( 123 xxx 
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designation of the multi-pole (Fig. 3), the resulting network can be represented as 

a circuit diagram, which is illustrated by Figure 4. 

 
 

Figure 4. Circuit diagram of a 3SAT CNF logical network  
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The size of such a network constructed in terms of the m number of clauses written 

as 3SAT CNF is linear and is equal to (49 m-1) goals.  

 

To determine the size of the network with respect to n number of variables, one 

needs to take into account the case of 3SAT CNF where clauses in all combinations 

of the three  n variables can appear. The number of such combinations amounts to 

(n-2)  (n-1)  n / 6, and thus their number is expressed in a  polynomial of the third 

degree.  

 

Considering the fact that for each three combination of n variable there are eight 

different clauses, thus, in the worst case, the number of clauses in the formula 

3SAT CNF will reach 4/3   n (n-1)  (n-2) at its most. 
 

 

Note 3.3: In fact, the worst case can be limited to a situation in which in the 

formula 3SAT CNF there is a maximum of seven clauses of the same combination 

of variables. This can easily be taken for granted based on the fact that if only for 

one combination of the three variables written as CNF there occurred eight clauses, 

the whole formula would not be satisfiable (CNF of eight clauses is defined as a 

function constant FALSE). 

 

Consequently, the size of 3 SAT CNF  logical network constructed according to a 

scheme of multiplexer circuit 8/1 is not greater than 49  4/3   n (n-1) (n-2) goals. 

 

Thus, the network has a polynomial size. In addition, it is a network that is easy to 

use as a monotone network. In order to do this, it is sufficient that all the 

multiplexer address inputs Xi (i = 1, 2, ..., m) provide constant true. It has to be 

remembered, though, that the address inputs of multiplexers are given variables of 

xr, xs, xt  {x1, x2, ..., xn} where r  {1, 2, ... n-2}, s  (r 1, r 2, ..., n-1} and t  {s 

1, s 2, ... n}, ie.  r <s <t, appearing in various clauses, whereas providing valuations 

of xi = true is required by the definition of a monotone network. For the vector of 

valuations of variables [x1, x2, ..., xn]  that specifies any other process of valuation 

of these variables, the network remains decisive. 

 

It only remains to prove that the construction of the network can be done in n log  

memory. The process of duplication of 3SAT elementary networks (multiplexer 

8/1) requires one variable to remember the  m number of clauses and one counter 

for the indexation of the subsequent 3SAT elementary networks and their inputs. 

Yet another counter is needed to calculate the number of constant inputs which 

should be given a constant value  false. Connections to respective gates require 

only direct operations on indices and they are, therefore, easy to perform in the 

logarithmic memory. 
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IV. SUMMARY 
 

The hypothesis of the existence of monotone polynomial networks for the 3SAT 

CNF problem, as formulated at the beginning, leads directly to the claim of 

equality of classes of P and NP problems. 

 

To demonstrate the veracity of the given hypothesis has been an essential part of 

this research. It has been described that by using the duality of logical functions, it 

is possible to treat the conjunction of clauses, written in 3SAT CNF , as a 

conjunction of elementary functions of three variables. It has been shown that 

using the elements of the theory of combinational circuits, it is possible to define a 

universal logical network for any elementary logic function of three variables. Such 

a universal network is characterized by a constant size expressed by the 48 logic 

gates AND, OR, and NOT. In particular, this applies to all of eight possible forms 

of clauses of three variables. It has been demonstrated that the task of such a 

universal logical network can be performed by a network constructed on the basis 

of a multiplexer circuit 8/1. 

 

Furthermore, it has been shown that the logical network of complete 3SAT CNF, in 

the worst case, is characterised by the size expressed by O (n
3
). And finally, it has 

been demonstrated that such a network can be constructed in the logarithmic 

memory, and that it can be a monotone one. 
 

Choosing a 3SAT problem to demonstrate the existence of a monotone polynomial 

network is not accidental
2
. First of all, the problem of SAT satisfiability is of 

primary importance for analysis in terms of COMPLETENESS. All results in 

relation to it, therefore, refer to both NP - complete problems (3SAT problem) as 

well as the P - complete  problems (2SAT problem). Moreover,  a 3SAT problem 

was chosen in order to avoid difficulties similar to those that occurred in the 

process of verification and checking of the solution to the problem of 

KNAPSACK. 
 

 

 

It cannot be denied that the description and analysis of the  network structure (and 

the whole family of networks) is correct unless (1) firstly, the definition of the 

family of monotone network is questioned, including the condition that each 

network of the family was constructed in the n log memory, and that it was 

decisive for the input words, such that xi = 1 for each i = 1, ..., n, where n is as 

                                                           
2
 In subsequent papers prepared for publication the construction of a monotone polynomial 

network for the problem MULT (n) will be described. 
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defined in [3, p. 285]
3
 a length of the word describing a method of how to value the 

variables of the 3SAT formula, mapped by a logical network, and not, as in [3, 

p.43]
4
, the length of the word describing the problem in terms of a Turing machine; 

(2) and secondly, it is challenged that a Turing machine model and a logical 

network model are equivalent, and an error is pointed out in the theorem quoted in 

the introduction that a complexity of logical networks is combined with the 

complexity of time logic [1, pp. 401-405]. 
 

In fact, the Cn logical network design is nothing else but a polynomial reduction of 

the 3SAT CNF formula φ (x1, x2, ..., xn) to the problem of CIRCUIT VALUE as is 

the reduction of any language L ε P  to CIRCUIT VALUE, described in [3, pp. 184-

186]. In both cases, it is a process of duplicating of the identical elementary 

networks and then connecting the corresponding input and output goals. 

 

Apart from the fact that structurally a 3SAT polynomial network does not differ 

from a 2SAT network (in 2SAT networks multiplexers 8/1 are replaced by 

multiplexers  4/1 ), yet another aspect of a monotone polynomial network is worth 

mentioning. The fact that for a 3SAT a logical network of a polynomial number of 

goals can be constructed paves the way for "daring" attempts to construct hardware 

implementation for an algorithm to 2SAT and 3SAT solutions; and "even more 

daring" attempts to develop algorithms for poly-logarithmic time paralleled with 

total polynomial work. And if these attempts turned out a success, it would solve 

another interesting issue, namely NC (Nick’s Class) versus P.  

 

Having demonstrated that there exists a monotone network for 3SAT CNF is 

equivalent to the claim that there exists a polynomial algorithm for 3SAT CNF. An 

attempt to design such an algorithm, regardless of its practical importance, may be 

looked upon as part of the verification of the above findings. 
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3
 "... we know that a logical network of n input variables can compute any logical function 

of n variables. Equivalently, we may think that the network accepts some words of the n 

length of {0, 1} *, and rejects the others. In this context, the words x = x1 ... xn ε {0, 1} * 

are treated as a valuation of input variables, ... " 
4
 "To solve this problem by using a Turing machine, we must first decide how we will write 

(represent) the example by means of words." 


